
Expert Systems with Applications 39 (2012) 7976–7994
Contents lists available at SciVerse ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa
Single-pass incremental and interactive mining for weighted frequent patterns

Chowdhury Farhan Ahmed a, Syed Khairuzzaman Tanbeer a, Byeong-Soo Jeong a,⇑, Young-Koo Lee a,
Ho-Jin Choi b

a Department of Computer Engineering, Kyung Hee University, 1 Seochun-dong, Kihung-gu, Youngin-si, Kyunggi-do, 446-701, Republic of Korea
b Department of Computer Science, Korea Advanced Institute of Science and Technology (KAIST), 335 Gwahak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea

a r t i c l e i n f o
Keywords:
Data mining
Knowledge discovery
Weighted frequent pattern mining
Incremental mining
Interactive mining
0957-4174/$ - see front matter Crown Copyright � 2
doi:10.1016/j.eswa.2012.01.117

⇑ Corresponding author. Tel.: +82 31 201 2932; fax
E-mail addresses: jeong@khu.ac.kr, jeong_khu@yah
a b s t r a c t

Weighted frequent pattern (WFP) mining is more practical than frequent pattern mining because it can
consider different semantic significance (weight) of the items. For this reason, WFP mining becomes an
important research issue in data mining and knowledge discovery. However, existing algorithms cannot
be applied for incremental and interactive WFP mining and also for stream data mining because they are
based on a static database and require multiple database scans. In this paper, we present two novel tree
structures IWFPTWA (Incremental WFP tree based on weight ascending order) and IWFPTFD (Incremental
WFP tree based on frequency descending order), and two new algorithms IWFPWA and IWFPFD for incre-
mental and interactive WFP mining using a single database scan. They are effective for incremental and
interactive mining to utilize the current tree structure and to use the previous mining results when a
database is updated or a minimum support threshold is changed. IWFPWA gets advantage in candidate
pattern generation by obtaining the highest weighted item in the bottom of IWFPTWA. IWFPFD ensures
that any non-candidate item cannot appear before candidate items in any branch of IWFPTFD and thus
speeds up the prefix tree and conditional tree creation time during mining operation. IWFPTFD also
achieves the highly compact incremental tree to save memory space. To our knowledge, this is the first
research work to perform single-pass incremental and interactive mining for weighted frequent patterns.
Extensive performance analyses show that our tree structures and algorithms are very efficient and scal-
able for single-pass incremental and interactive WFP mining.

Crown Copyright � 2012 Published by Elsevier Ltd. All rights reserved.
1. Introduction

In practice, the frequency of a pattern may not be a sufficient
indicator for finding meaningful patterns from a large transaction
database because it only reflects the number of transactions in
the database which contain that pattern. In many cases, an item
in a transaction can have different degree of importance (weight).
For example, in retail applications an expensive product may con-
tribute a large portion of overall revenue even though it does not
appear in a large number of transactions. For this reason, weighted
pattern mining (Ahmed, Tanbeer, Jeong, & Lee, 2008; Cai, Fu,
Cheng, & Kwong, 1998; Tao, 2003; Wang, Yang, & Yu, 2004; Yun,
2007a, 2007b, 2007c; Yun, 2008a, 2008b; Yun & Leggett, 2005a,
2005b; Yun & Leggett, 2006) was proposed to discover more
important knowledge considering different weights of each item,
which plays an important role in the real world scenarios.
Weight-based pattern mining approach can be applied in many
areas, such as market data analysis where the prices of products
012 Published by Elsevier Ltd. All

: +82 31 202 1723.
oo.com (B.-S. Jeong).
are important factors, web traversal pattern mining where each
web page has different strength of impact, and biomedical data
analysis where most diseases are not caused by a single gene but
by a combination of genes.

Along with considering the different weights of items in mining
meaningful patterns, developing incremental and interactive min-
ing algorithm is also quite important as a database grows very rap-
idly and changes frequently in real world applications. When a
database is changed by inserting and deleting several transactions,
it is very time consuming to re-process the whole mining opera-
tions for getting new mining results. Furthermore, finding an
appropriate minimum support threshold may require repeated
mining processes to adjust threshold value. Therefore, it is impor-
tant to avoid unnecessary computations by utilizing the previous
data structures or mining results. Some research works (Chang,
Wang, Yang, Luan, & Tang, 2009; Cheung & Zaïane, 2003; Koh &
Shieh, 2004; Lee & Yen, 2008; Leung, Khan, Li, & Hoque, 2007; Li,
Deng, & Tang, 2006; Lin, Hong, & Lu, 2009; Tanbeer, Ahmed, Jeong,
& Lee, 2009; Zhang, Zhang, & Zhang, 2007) have been done to han-
dle such incremental databases. They have shown that incremental
prefix tree can be an effective data structure for maintaining whole
information of a changing transaction database.
rights reserved.

http://dx.doi.org/10.1016/j.eswa.2012.01.117
mailto:jeong@khu.ac.kr
mailto:jeong_khu@yahoo.com
http://dx.doi.org/10.1016/j.eswa.2012.01.117
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa


C.F. Ahmed et al. / Expert Systems with Applications 39 (2012) 7976–7994 7977
There have been a lot of research works dealing with these is-
sues in the area of data mining (Cai et al., 1998; Cheung & Zaïane,
2003; Koh & Shieh, 2004; Leung et al., 2007; Li et al., 2006; Tanbeer
et al., 2009; Tao, 2003; Wang et al., 2004; Yun, 2007a, 2007b,
2007c; Yun, 2008a; Yun & Leggett, 2005a, 2005b, 2006; Zhang
et al., 2007). However, to the best of our knowledge there was no
attempt to solve these problems together when newly developing
a pattern mining algorithm. Existing weighted frequent pattern
mining algorithms (Cai et al., 1998; Tao, 2003; Wang et al., 2004;
Yun, 2007a, 2007c; Yun & Leggett, 2005a, 2005b, 2006) assumed
that databases were static and did not consider the scenarios
where one or more transactions could be deleted and inserted in
the database. Moreover, the data structures presented in the previ-
ous works do not have the ‘‘build once mine many’’ property which
is very necessary for interactive mining. Hence, the data structure
was designed for a particular minimum threshold. If the minimum
threshold is 30%, for example, then they can calculate the result for
this specified threshold only. If the users again want to know the
result for minimum threshold 20%, then they have to build their
data structures again and start their calculations from the very
beginning. In our real world scenarios, users need to extract knowl-
edge using different minimum thresholds according to their appli-
cation interests from the database. Accordingly, the ‘‘build once
mine many’’ property of a data structure is necessary to discover
this type of knowledge without building the data structure again
and also within a real time. On the other hand, most incremental
and interactive mining approaches were developed for finding fre-
quent patterns without considering the different weights of items.
Furthermore, in recent years many applications (i.e., sensor net-
works, network monitoring, stock trading, etc.) produce data in
the shape of data streams (Chang & Lee, 2005; Jiang & Gruenwald,
2006; Metwally, Agrawal, & Abbadi, 2006; Raissi, Poncelet, &
Teisseire, 2007; Yu, Chong, Lu, Zhang, & Zhou, 2006). To discover
knowledge or patterns from data streams, it is necessary to devel-
op single-scan and on-line mining methods.

Motivated from these real world scenarios, we propose a pat-
tern mining approach which can solve these problems at one time.
In this paper, we propose two novel tree structures IWFPTWA

(Incremental weighted frequent pattern tree based on weight
ascending order) and IWFPTFD (Incremental weighted frequent
pattern tree based on frequency descending order). Both of them
can handle incremental data in a single-scan of database and they
have the ‘‘build once mine many’’ property for interactive mining.
Based on the above tree structures, we develop two new algo-
rithms IWFPWA and IWFPFD. They exploit a pattern growth mining
approach. Our proposed first tree structure IWFPTWA arranges the
items in weight ascending order and can be constructed without
any restructuring operation. IWFPWA gets advantage in candidate
pattern generation by obtaining the highest weighted item in the
bottom of the IWFPTWA. However, this weight ascending order
does not guarantee that candidate items come before the non-can-
didate items in any branch of the tree. Hence, lots of non-candidate
items may come in between the candidate items inside a tree. This
situation increases the prefix tree and conditional tree creation
time during the mining operation. Our proposed second tree struc-
ture IWFPTFD arranges the items in frequency descending order
and ensures non-candidate items cannot appear before candidate
items in any branch of a tree. By using IWFPTFD, our proposed sec-
ond algorithm IWFPFD speeds up the prefix tree and conditional
tree creation time during the mining operation and achieves over-
all runtime gain over IWFPWA. Moreover, by sorting the items in
frequency descending order, IWFPTFD also achieves a highly com-
pact incremental tree structure to save memory space.

In summary, the main contributions of this paper are: (1) Devis-
ing two novel tree structures that are very efficient for finding
weighted frequent patterns, (2) development of two new
single-scan mining algorithms based on the above tree structures,
which can be applied for finding weighted frequent patterns over a
data stream, (3) description of how to apply our algorithms for
incremental and interactive mining, and (4) extensive performance
study to compare the performance of our algorithms with the
existing recent WFIM algorithm and show the effectiveness of
one database scan and incremental database.

The remainder of this paper is organized as follows. In Section 2,
we describe background. In Section 3, we develop our proposed
tree structures for incremental and interactive weighted frequent
pattern mining and show how they can handle additions, deletions
and modifications of transactions. In Section 4, we describe our
proposed algorithms for incremental and interactive weighted fre-
quent pattern mining and analyze their performances. In Section 5,
our experimental results are presented and analyzed. In Section 6,
we elaborately discuss the practical application areas of weighted
frequent pattern mining. Finally, in Section 7, conclusions are
presented.
2. Background

In the following subsection we discuss about the background
and related research works on frequent pattern mining, incremen-
tal and interactive pattern mining and weighted frequent pattern
mining. Subsequently, we describe the main challenging problem
in weighted frequent pattern mining.

2.1. Problem definitions and related work

2.1.1. Frequent pattern mining
The support/frequency of a pattern is the number of transac-

tions containing the pattern in the transaction database. The prob-
lem of frequent pattern mining is to find the complete set of
patterns satisfying a minimum support in the transaction database.
The downward closure property (Agrawal & Srikant, 1994; Agrawal,
Imieliński, & Swami, 1993) is used to prune the infrequent pat-
terns. This property tells that if a pattern is infrequent then all of
its super patterns must be infrequent. Apriori (Agrawal & Srikant,
1994; Agrawal et al., 1993) algorithm is the initial solution of fre-
quent pattern mining problem and very useful in association rule
mining (Agrawal & Srikant, 1994; Agrawal et al., 1993; Jiang & Gru-
enwald, 2006; Koh & Shieh, 2004; Li et al., 2006; Lim & Lee, 2010;
Verma & Vyas, 2005). But it suffers from the level-wise candidate
generation-and-test problem and needs several database scans.
FP-growth (frequent pattern growth) (Han, Pei, Yin, & Mao, 2004)
solved this problem by using FP-tree-based solution without any
candidate generation and using only two database scans. Many
other research works (Chang & Lee, 2005; Cheung & Zaïane,
2003; Dong & Han, 2007; Grahne & Zhu, 2005; Han, Cheng, Xin,
& Yan, 2007; Hu, Sung, Xiong, & Fu, 2008; Jiang & Gruenwald,
2006; Koh & Shieh, 2004; Lee, Tsao, Chen, Lin, & Yang, 2010; Leung
et al., 2007; Li et al., 2006; Metwally et al., 2006; Pei & Han, 2000;
Raissi et al., 2007; Song, Yang, & Xu, 2008; Tanbeer et al., 2009;
Verma & Vyas, 2005; Wang, Han, & Pei, 2003; Ye, Wang, & Shao,
2005; Yu et al., 2006; Zhang et al., 2007) have been done to devise
new algorithms or improve the existing algorithms for finding fre-
quent patterns. Moreover, pattern growth technique is also very
useful for sequential pattern mining (Pei et al., 2004). However,
this traditional frequent pattern mining considers equal weight
(profit) for all items.

2.1.2. Incremental and interactive pattern mining
As for incremental mining, we mean a kind of mining tech-

niques which can be well applied for the dynamic environment
where a database grows and changes frequently. Interactive



Table 1
An example transaction database and weight table.

Bar
code

Item Price
($)

Support
(frequency)

Normalized
Weight

1 Personal
computer

800 500 0.8

2 Laser printer 450 320 0.45
3 Bubble jet

printer
250 450 0.25

4 Digital camera 600 700 0.6
5 Memory stick 200 825 0.2
6 Hard disk 130 350 0.13
7 DVD drive 100 450 0.1
8 CD drive 50 250 0.05
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mining means that repeated mining with different minimum sup-
port threshold values can be possible by utilizing the same data
structure or previous mining results. Some research works (Cheung
& Zaïane, 2003; Koh & Shieh, 2004; Leung et al., 2007; Li et al.,
2006; Lin et al., 2009; Tanbeer et al., 2009; Zhang et al., 2007) have
developed single-pass incremental and interactive mining algo-
rithms based on traditional frequent pattern mining. AFPIM (Koh
& Shieh, 2004) readjusts an FP-tree structure using path adjusting
(bubble sort) mechanism in order to improve incremental mining
performance. CanTree (Leung et al., 2007) captures the transac-
tions in canonical order and maintains the whole database infor-
mation in a tree while the database is growing or shrinking. It
has the ‘‘build once mine many’’ property. CP-tree (Tanbeer et al.,
2009) improves CanTree by restructuring the incremental prefix-
tree according to the frequency descending order and thus, gets
remarkable mining time improvement compared to CanTree. These
research works have shown that their incremental prefix-tree
structures are quite possible and efficient using currently available
memory size in gigabyte range. Some other single-pass mining
algorithms (Chang & Lee, 2005; Jiang & Gruenwald, 2006; Li,
2009; Metwally et al., 2006; Raissi et al., 2007; Yu et al., 2006) have
been developed to find out frequent patterns over a data stream in
real time. Efficient dynamic database updating algorithm (EDUA)
Zhang et al. (2007) is designed for mining databases when data
deletion is carried out frequently in any subset of a database. Inc-
WTP and WssWTP algorithms (Lee & Yen, 2008) are designed for
incremental and interactive mining of web traversal patterns.
2.1.3. Weighted frequent pattern mining
Let I = {i1, i2, . . . , im} be a set of items and D be a transaction

database {T1, T2, . . . , Tn} where each transaction Ti e D is a subset
of I. A pattern or itemset is defined by the set X = {x1, x2, . . . , xk},
where X # I and k e [1, m]. However, an itemset is called k-itemset
when it contains k distinct items. For example, ‘‘ab’’ is a 2-itemset
and ‘‘abd’’ is a 3-itemset in Fig. 1.

A weight of an item is a non-negative real number assigned to
reflect the importance of the item in the transaction database.
The weight of a pattern, P{x1, x2, . . . , xk} is given as follows:

WeightðPÞ ¼
PlengthðPÞ

q¼1 WeightðxqÞ
lengthðPÞ ð1Þ

For example, Weight(ad) = (0.6 + 0.35)/2 = 0.475 in the example
database of Fig. 1.

A weighted support of a pattern is defined as the resultant value
of multiplying the pattern’s support with the weight of the pattern.
So the weighted support of a pattern P is given as follows:

WsupportðPÞ ¼WeightðPÞ � SupportðPÞ ð2Þ

For example, Wsupport(ad)=0.475 � 4 = 1.9 in Fig. 1.
Fig. 1. An example of retail database.
A pattern is called a weighted frequent pattern if the weighted
support of the pattern is greater than or equal to the minimum
threshold. Consider the minimum threshold is 1.5 in Fig. 1 and
then ad is a weighted frequent pattern.

Table 1 shows an example of a retail database in which the nor-
malized weight values are assigned to items based on the price of
each item. Normalization process is needed for adjusting the differ-
ences among data of varying sources to create a common basis for
comparison (Yun, 2007a; Yun & Leggett, 2005a, 2005b, 2006).
According to the normalization process, the final weights of items
can be determined within a specific weight range. For example, in
Table 1 the weight values of items are given in the range from 0.05
to 0.8.

In the very beginning, some weighted frequent pattern mining
algorithms MINWAL (Cai et al., 1998), WARM (Tao, 2003), WAR
(Wang et al., 2004) have been developed based on the Apriori algo-
rithm using the level-wise candidate generation-and-test para-
digm. Obviously, these algorithms require multiple database
scans and result in poor mining performance. WFIM (Yun & Legg-
ett, 2005a) is the first FP-tree based weighted frequent pattern
mining algorithm using two database scans over a static database.
It has used a minimum weight and a weight range. Items are given
fixed weights randomly from the weight range. It has arranged the
FP-tree using weight ascending order and maintained the down-
ward closure property on that tree. WLPMINER (Yun, 2008b; Yun
& Leggett, 2005b) algorithm finds weighted frequent patterns
using length decreasing support constraints. WCloset (Yun,
2007c) is proposed to calculate the closed weighted frequent pat-
terns. To extract the more interesting weighted frequent patterns,
WIP (Yun, 2007a; Yun & Leggett, 2006) algorithm introduces a new
measure of weight-confidence to measure strong weight affinity of
a pattern. It has used another measure hyperclique-confidence
(Xiong, Tan, & Kumar, 2006) to measure strong support affinity
of a pattern. Except that WFIM and WIP use the different pruning
conditions to find out interesting patterns, overall mining proce-
dures are almost same. It means that both of them require two
database scans which are not suitable for either stream data min-
ing or incremental/interactive mining.
2.2. Main challenging problem in weighted frequent pattern mining

WFIM (Yun & Leggett, 2005a) and WIP (Yun, 2007a; Yun & Legg-
ett, 2006) pointed out the main challenging problem of weighted
frequent pattern mining is, weighted frequency of a pattern (or
an itemset) does not have the downward closure property. Consider
the example database of Fig. 1. The item ‘‘a’’ has a weight of 0.6 and
a frequency of 5, the item ‘‘d’’ has a weight of 0.35 and a frequency
of 4, the pattern ‘‘ad’’ has a frequency of 4. According to Eq. (1), the
weight of the pattern ‘‘ad’’ is 0.475 and according to Eq. (2) its
weighted support is 1.9. Weighted support of ‘‘a’’ is 0.6 � 5 = 3.0



Fig. 2. IWFPTWA construction.

Fig. 3. Incremented and updated database.

Fig. 5. Update operations in IWFPTWA.
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and ‘‘d’’ is 0.35 � 4 = 1.4. If the minimum threshold is 1.5, then pat-
tern ‘‘d’’ is weighted infrequent but ‘‘ad’’ is weighted frequent, i.e.,
downward closure property is not satisfied here. WFIM and WIP
maintain downward closure property by multiplying each pattern’s
support by the global maximum weight. In the above example,
item ‘‘a’’ has the maximum weight which is 0.6, then by multiply-
ing it with the support of item ‘‘d’’, 2.4 can be obtained. So, pattern
Fig. 4. Incremental oper
‘‘d’’ is not pruned at the early stage and pattern ‘‘ad’’ will not be
missed. At the final stage, this overestimated pattern ‘‘d’’ will be
pruned finally by using its actual weighted support.

To our knowledge, none of existing weighted frequent pattern
mining methods proposed any solution for incremental mining,
where lots of transactions can be added and deleted. Moreover, they
need at least two database scans, not suitable for stream data mining
and do not have the ‘‘build once mine many’’ property for interactive
mining. For this reason, we propose novel tree structures and algo-
rithms for single-pass incremental and interactive mining of
ations in IWFPTWA.



Fig. 6. Construction of IWFPTFD and performing inserting and restructuring operations.
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weighted frequent patterns containing the ‘‘build once mine many’’
property. However, this paper includes substantively novel and dif-
ferent contributions beyond the preliminary conference version (C.F.
Ahmed et al., 2008) including new tree structure and algorithms
which are more efficient with respect to runtime and memory, en-
hanced motivation with real-life applications, rigorous analysis of
the mining as well as overall performance of the algorithms, elabo-
rate descriptions to explain how to apply our tree structures and
algorithms for incremental and interactive WFP mining with new
figures and tables, a thorough presentation of the background, and
comprehensive experimental results with discussions.

3. Our proposed tree structures

In this section, at first we describe the overall prefix tree struc-
ture for better understanding of our proposed tree structures. After
that, we describe the construction process of our proposed tree
structures and show that how additions, deletions and modifica-
tions are possible inside the tree structures. Similar to FP-tree
(Han et al., 2004), a header table is maintained to keep an item or-
der in both the tree structures. Each entry in a header table explic-
itly maintains item-id, frequency and weight information for each
item. However, each node in a tree only maintains item-id and fre-
quency information. To facilitate the tree traversals adjacent links
are also maintained (not shown in the figures for simplicity) in our
tree structures like FP-tree. We will use the term IWFPT to denote
two tree structures together.

3.1. Overall prefix tree structure

A prefix tree is an ordered tree with any predefined item order
such as lexicographic order, frequency ascending or descending
order, and weight ascending and descending order. We can read
transactions one by one from a transaction database and insert it
into the tree according to any predefined order. In this way prefix
tree can represent a transaction database in a very compressed
form when different transactions have many items in common.
This type of path overlapping is called prefix-sharing. The more
the prefix-sharing the more compression we can achieve from
the prefix tree structure. FP-growth (Han et al., 2004) algorithm
introduced a prefix tree structure named FP-tree, which arranges
the items in frequency descending order. They have shown that,
by arranging the items according to that order huge prefix-sharing
can be achieved. They have also shown that, in their mining oper-
ation when they create prefix and conditional trees for a particular
item, the trees are also compact in size having huge prefix-sharing.
As a consequence, they can achieve a lot of gain in overall mining
time.

As discussed in Section 2.1.3, the previous prefix-tree-based
algorithms for weighted frequent pattern mining (Yun, 2007a,
2007c, 2008b; Yun & Leggett, 2005a, 2005b, 2006) are based on
weight-ascending order of items. The main advantage of weight-
ascending ordered prefix tree structures is to get the maximum
weighted item in the bottom of a tree. Accordingly, when we go
for bottom-up mining, the local maximum weight may reduce in
each step (we will explain in Section 4.1). The previous works
are based on a static database. In the first database scan they cal-
culate the single-element candidates and in the second scan they
mine the other candidates and finally select the actual weighted
frequent patterns. Our first proposed incremental prefix tree struc-
ture IWFPTWA is based on the weight ascending order to perform
incremental and interactive weighted frequent pattern mining. It
has the advantage of the previous algorithms, but as it keeps the
incremental data in weight ascending order, it has a poor
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prefix-sharing. Therefore, prefix-tree size becomes large and non-
candidate nodes are present between the candidate nodes inside
the tree. This enlarges the overhead of the prefix tree and condi-
tional tree creation for a particular item/itemset during mining
process. To solve these problems we propose our second tree struc-
ture IWFPTFD, which arranges the incremental prefix tree in fre-
quency descending order by restructuring operation to get the
advantages of FP-tree.
3.2. IWFPTWA: our first proposal

First of all, we describe the construction process of IWFPTWA

(incremental weighted frequent pattern tree based on weight
ascending order), then we show how it can handle insert and up-
date operations.

Consider the example database in Fig. 1a. We scan the transac-
tions one by one, sort the items in a transaction according to the
weight ascending order and then insert into the tree. A header ta-
ble is also maintained to keep all the items in the weight ascending
order. The first transaction T1 has the items ‘‘a’’, ‘‘b’’, ‘‘c’’, ‘‘d’’, ‘‘g’’,
and ‘‘h’’. After sorting, the new order will be ‘‘c’’, ‘‘d’’, ‘‘h’’, ‘‘g’’, ‘‘b’’,
and ‘‘a’’. Fig. 2a shows IWFPTWA after inserting T1. Fig. 2b shows
IWFPTWA after inserting T2. In the same way, all the transactions
up to T6 are inserted into the tree. Fig. 2c shows the final IWFPTWA

after inserting T6.
The term ‘‘db+’’ is used to denote a group of transactions to be

added. Here ‘‘db’’ stands for database and ‘‘+’’ stands for addition
of transactions. Similarly, ‘‘db�’’ and ‘‘dbmod’’ are used to denote a
group of transactions to be deleted and modified, respectively.
The original database presented in Fig. 1a is incremented by adding
two groups of transactions dbþ1 and dbþ2 as shown in Fig. 3a. Fig. 3b
shows the database is updated by deleting T4 and T7, and by mod-
ifying T5 (item ‘‘h’’ is replaced by ‘‘g’’). Figs. 4a and b show that
IWFPTWA can easily be incremented by inserting dbþ1 and dbþ2 ,
respectively. The insertion process is same as transactions are in-
serted during the construction process.

Now we delete db� (T4 and T7) from the current IWFPTWA

(shown in Fig. 4b). T4 is present in the tree as the path ‘‘c d b a’’.
To remove this transaction we have to reduce the frequency value
of all the nodes in that path by one. After reducing, the frequency
values of nodes ‘‘a’’ and ‘‘b’’ become zero at that path. Therefore, we
have to delete these two nodes (shown in Fig. 5). Fig. 5 also shows
that T7 has been removed in the same way and T5 is modified with
replacing item ‘‘h’’ with item ‘‘g’’ in the path ‘‘d h b a’’.

Property 1.. The ordering of items in IWFPTWA is not affected in spite
of changing the frequency of the items by additions, deletions and
modifications.
Proof. Let X and Y be two items with weight Wx and Wy respec-
tively. Consider Wx < Wy and their frequency values are Fx and Fy,
respectively. When database changes due to incremental updating,
the values of Fx and Fy may vary based on the occurrences of the
items in the incremented database. But it cannot create any effect
on Wx and Wy. Since the items in the tree are ordered in their
weight ascending order, X always comes before Y in any branch
of the tree. h
3.3. IWFPTFD: our second proposal

Here we first describe the construction process of IWFPTFD

(incremental weighted frequent pattern tree based on frequency
descending order). Afterwards, we show how it can handle inser-
tions, deletions and modifications.
Consider the example database in Fig. 1a. The initial IWFPTFD

can be constructed in the same way of IWFPTWA (shown in
Fig. 2). After adding all the six transactions of Fig. 1a, the IWFPTWA

(shown in Fig. 2c) is sorted/restructured according to the fre-
quency descending order by using a path adjusting method (Koh
& Shieh, 2004) (also known as bubble sort method for tree restruc-
turing) which is shown in Fig. 6a. According to the path adjusting
method, any node may be split when it needs to be swapped with
any child node having count smaller than that node. If the support
counts of both nodes are equal, simple exchange operation be-
tween them is performed. After each swapping operation, nodes
having same items (if any due to the swapping) are merged to-
gether. CP-tree (Tanbeer et al., 2009) shows that overall restruc-
turing time is less if it is done slot-by-slot in the database
compared to restructuring done on the full tree at the end. There-
fore, we also perform this tree restructuring operation in a way of
slot-by-slot fashion. It is remarkable that IWFPTFD (Fig. 6a) has
only 15 nodes (without root) compared to 22 nodes in the IWFPT-
WA (shown in Fig. 2c).

The new frequency descending sort order in the header table is
ha, b, d, h, e, c, f, gi as shown in Fig. 6a. Transactions in dbþ1 are in-
serted into IWFPTFD according to that order. After inserting T7 and
T8 in IWFPTFD (Fig. 6a) the resultant tree is shown in Fig. 6b. It is
obvious from the header table that items are not in the frequency
descending order now. So we need to sort the header table and tree
according to the frequency descending order. The sorted tree is
shown in Fig. 6c. It has only 17 nodes compared to 27 nodes of
IWFPTWA (shown in Fig. 4a). The new sort order is now ha, b, d, c,
h, e, g, fi. Transactions in dbþ2 are inserted into IWFPTFD according
to that order. After inserting T9 and T10 in IWFPTFD (Fig. 6c) the
resultant tree is shown in Fig. 6d. The sorted tree is shown in
Fig. 6e. It has only 18 nodes compared to 31 nodes of IWFPTWA

(shown in Fig. 4b). After deleting T4, T7, and modifying T5 from
IWFPTFD using the same way described in Section 3.2 the resultant
tree is shown in Fig. 7a. After sorting the resultant tree is shown in
Fig. 7b. It has only 16 nodes compared to 27 nodes of IWFPTWA

(shown in Fig. 5).
The following properties are true for both IWFPTWA and

IWFPTFD.

Property 2. The total count of frequency value of any node in IWFPT
is greater than or equal to the sum of total counts of frequency values
of its children.
Proof. In the proposed algorithm, every transaction is inserted
according to the weight ascending/frequency descending order of
items. Consider X is the parent node of Y in path P1 of the tree
and frequency value of X and Y are Fx and Fy respectively. The fre-
quency value of Y is increased when a transaction contains items
aXYb. Here a and b are the set of other items before X and after Y
respectively in P1 (b can be NULL). Hence, Fx is incremented before
Fy, and Fy cannot be greater than Fx. On the other hand, if at least
one transaction contains aX, then only Fx is incremented and Fx

becomes larger than Fy. Therefore, Fx P Fy. h
Property 3. IWFPT can be constructed in a single database scan.
Proof. In the proposed algorithm, one transaction is scanned from
a database and is inserted into IWFPT in the weight ascending/fre-
quency descending order. When a new group of transaction is
added, the algorithm needs to traverse the incremented part only.
Therefore, the algorithm needs to scan a transaction exactly once
from a database and it can be said that an IWFPT can be con-
structed in a single scan of a database. h



Fig. 7. Update operations in IWFPTFD.
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3.4. Handling insertion of a new item with a different weight

Our proposed tree structures can also handle the situation
efficiently when a new item comes with a different weight. Con-
sider the current updated database (Fig. 3b) is incremented by
adding dbþ3 which contains a new item ‘‘x’’ with a different
weight of 0.45. Figs. 8a and b show the modified database and
weight table, respectively. Fig. 8c shows the resultant IWFPTWA

with header table after inserting dbþ3 . The new item ‘‘x’’ is in-
serted into the header table according to its weight value. How-
ever, the previous ordering of items is not affected with the
insertion of this new value, i.e., if the previous order of two
items ij and ik is ij < ik, then it still holds. Therefore, Property 1
holds for IWFPTWA in this situation also and it does not need
any restructuring operation. We do not need to traverse any part
of the database twice due to this type of insertion process.
Hence, Property 3 holds for IWFPTWA. Fig. 8c shows that the first
transaction of dbþ3 , ‘‘a b x’’, is arranged as ‘‘x b a’’ in weight
ascending order and inserted as a new branch in IWFPTWA. On
the other hand, the second transaction, ‘‘f x’’ gets a prefix-sharing
with one existing child ‘‘f’’ node of the root and new item ‘‘x’’ is
inserted as a new child of ‘‘f’’. Accordingly, this insertion process
is also similar to the previous insertion process and does not
change the frequency relationship between the parent and child
nodes. As a consequence, Property 2 also holds for IWFPTWA in
this situation.

Fig. 8d shows the resultant IWFPTFD after inserting dbþ3 and
Fig. 8e shows the IWFPTFD after restructuring operation. These fig-
ures explain that although a new item with different weight is in-
serted into an IWFPTFD, frequency descending order of items can
still be achieved with restructuring operation. However, this pro-
cess does not need to traverse any part of the database twice. As
a result, Property 3 holds for IWFPTFD. In a similar way of IWFPTWA,
it can be shown from these figures that Property 2 also holds for
IWFPTFD in this situation. Furthermore, IWFPTFD can still achieve
a significant compression gain over IWFPTWA. For the current data-
base of Fig. 8a, IWFPTFD has only 19 nodes compared to 31 nodes of
IWFPTWA.

4. Our proposed algorithms

In this section, at first we describe the mining process of our
proposed IWFPWA and IWFPFD algorithms using our proposed
IWFPTWA and IWFPTFD tree structures, respectively. Then we ana-
lyze their mining performances and describe how they are effec-
tive in interactive mining. Finally, we formally present and
describe our proposed algorithms.
4.1. Mining process in IWFPWA

In FP-growth mining algorithm (Han et al., 2004), when a prefix
tree is created for a particular item, all the branches prefixing that
item are taken with the frequency value of that item. After that, a
conditional tree is created from the prefix tree by deleting the
nodes containing infrequent items. IWFPWA does the same type
of mining operation. As discussed in Section 2.2, the main challeng-
ing problem in this area is that the weighted frequency of an item-
set does not have the downward closure property and to utilize this
property we have to use the global maximum weight. The global
maximum weight, denoted by GMAXW, is the maximum weight
of all the items in the whole database. For example, in Fig. 1b,
the item ‘‘a’’ has the global maximum weight of 0.6. Local maxi-
mum weight, denoted by LMAXW, is needed when we are doing
the mining operation for a particular item. As IWFPTWA is sorted
in weight ascending order, we get advantage here in the bottom-
up mining operation. For example, after mining the weighted fre-
quent patterns for the item ‘‘a’’, when we go for the item ‘‘b’’, then
the item ‘‘a’’ will never come in its prefix and conditional trees. As a
result, now we can easily assume that the item ‘‘b’’ has the maxi-
mum weight. This type of maximum weight in mining process is
known as LMAXW. As LMAXW is reducing from bottom to top,
the probability of a pattern to be a candidate is also reduced.

Consider the current database presented at Fig. 8a, weight table
of items at Fig. 8b, IWFPTWA constructed for that database at
Fig. 8c, and minimum threshold = 2.2. Here GMAXW = 0.6. After
multiplying the frequency of each item with GMAXW, the weighted
frequency list is hc:1.8, f:1.8, d:2.4, h:1.2, g:3.0, x:1.2, e:1.8, b:4.2,
a:4.8i. As a result, the candidate items are ‘‘d’’, ‘‘g’’, ‘‘b’’, and ‘‘a’’.
Now we construct the prefix and conditional trees for these items
in a bottom-up fashion and mine the weighted frequent patterns.
At first the prefix tree of the bottom-most item ‘‘a’’ is created by
taking all the branches prefixing the item ‘‘a’’ as shown in Fig. 9a.
To create the conditional tree for the item ‘‘a’’, we have to delete
the nodes from its prefix tree which cannot form candidate pattern
with item ‘‘a’’. Observe that the prefix tree of the item ‘‘a’’ (shown
in Fig. 9a) contains global weighted infrequent items ‘‘c’’, ‘‘f’’, ‘‘h’’,
‘‘e’’, and ‘‘x’’. Without any calculation we can delete these nodes.
After that we multiply the frequency of other items by LMAXW.
As we are now dealing with the bottom-most item ‘‘a’’,
LMAXW = GMAXW = 0.6. The weighted frequency list is hd:2.4,
g:2.4, b:3.6i. Accordingly, we cannot prune them now because
any one of these three items could form weighted frequent pattern
with the item ‘‘a’’. The conditional tree created for the item ‘‘a’’ is
shown in Fig. 9b. Candidate patterns ‘‘ad’’, ‘‘ag’’, ‘‘ab’’, and ‘‘a’’ are
generated here.



Fig. 8. Handling insertion of a new item with a different weight.

C.F. Ahmed et al. / Expert Systems with Applications 39 (2012) 7976–7994 7983
The prefix tree of pattern ‘‘ab’’ is created in Fig. 9c. Two items
‘‘d’’ and ‘‘g’’ are candidates with pattern ‘‘ab’’. As a result, this is also
the conditional tree for the pattern ‘‘ab’’. Candidate patterns ‘‘abd’’
and ‘‘abg’’ are generated. The prefix trees of patterns ‘‘abg’’ and ‘‘ag’’
are shown in Fig. 9d and e, respectively. Now prefix tree for the
item ‘‘b’’ is created in Fig. 9f. For item ‘‘b’’, the LMAXW = 0.5 as
the item ‘‘a’’ will not come out here. Observe that the global
weighted infrequent items ‘‘c’’, ‘‘f’’, ‘‘h’’, ‘‘e’’, and ‘‘x’’ are present
in this tree. We have to delete them. The weighted frequency list
is hd:2.0, g:2.5i. The key point is that, the weighted frequency of
‘‘d’’ is 4 � 0.5 = 2.0, as LMAXW reduces from 0.6 to 0.5. Now
without further calculation we can prune ‘‘d’’. But if LMAXW is
0.6 at this point, then the weighted frequency of ‘‘d’’ is
4 � 0.6 = 2.4 and hence it becomes a candidate. This is the main
advantage of IWFPWA.

The conditional tree of item ‘‘b’’ contains only one item ‘‘g’’
(shown in Fig. 9g) and the candidate pattern ‘‘bg’’ is generated.
The prefix tree of the item ‘‘g’’ is shown in Fig. 9h and LMAXW = 0.4
for this tree. Global infrequent items ‘‘c’’, ‘‘f’’, and ‘‘h’’ are present
but we do not need any calculation for them. The weighted fre-
quency list is hd:1.2i. As a consequence, we do not have to create
any conditional tree for the item ‘‘g’’. We have to test all the
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candidate patterns with their actual weights and the weighted fre-
quency using Eqs. (1) and (2) respectively and mine the actual
weighted frequent patterns. Table 2 shows these calculations.
The actual weighted frequent patterns are ha:4.8, b:3.5, ab:3.3,
bg:2.25i.
4.2. Mining process in IWFPFD

To reduce the huge number of nodes in the prefix and condi-
tional trees in IWFPWA, IWFPFD is designed based on IWFPTFD.
IWFPFD uses same technique for creating prefix and conditional
trees in mining operation. As it is sorted according to the frequency
descending order, LMAXW could be anywhere for a particular item.
Here we start the pattern growth mining operation from the top-
most item. Obviously LMAXW here is the weight of the first item.
After that for the second item, we compare the weight of the sec-
ond item with previous LMAXW and choose the larger one as cur-
rent LMAXW. For example, if the weight of second item is 0.7/0.6
and previous LMAXW (i.e., weight of the first item) is 0.6/0.7,
LMAXW for second item is 0.7. By moving in this way we can save
the LMAXW calculation for each item.

Here we have shown the worst case situation of our IWFPTFD in
Fig. 8e. The top-most item ‘‘a’’ has the highest weight, i.e., LMAXW
for all the candidate items below ‘‘a’’ (e.g., ‘‘b’’, ‘‘g’’, ‘‘d’’) is 0.6 which
is also the GMAXW. This situation could generate some extra can-
didates. Starting from the top-most item, at first, the candidate pat-
tern ‘‘a’’ is generated. After that, we go to the item ‘‘b’’. Fig. 10a
shows the prefix and conditional tree for the item ‘‘b’’ that only
contains the item ‘‘a’’. LMAXW = 0.6 for the item ‘‘b’’. Candidate pat-
terns ‘‘ab’’ and ‘‘b’’ are generated here. Fig. 10b shows the prefix
and conditional tree for the item ‘‘g’’. Again, LMAXW = 0.6 for the
item ‘‘g’’. Candidate patterns ‘‘ag’’, ‘‘bg’’, and ‘‘g’’ are generated here.
The prefix and conditional tree for the itemset ‘‘bg’’ is shown in
Fig. 10c. Pattern ‘‘abg’’ is generated here. The prefix tree for the
item ‘‘d’’ is shown in Fig. 10d. The conditional tree of item ‘‘d’’ is
created by deleting the item ‘‘g’’ as it has lower weighted frequency
with item ‘‘d’’ compared to the minimum threshold (shown in
Fig. 10e). Candidate patterns ‘‘ad’’, ‘‘bd’’, ‘‘abd’’, and ‘‘d’’ are gener-
ated here. Table 3 shows the calculations of these candidate pat-
terns. One extra pattern ‘‘bd’’ is generated here which is not
generated by IWFPWA. Observe that no global weighted infrequent
items like ‘‘c’’, ‘‘f’’, ‘‘h’’, ‘‘e’’, ‘‘x’’ appear in any prefix and conditional
trees during mining in IWFPFD.
4.3. Analysis of mining performance

FP-growth (Han et al., 2004) showed that we can get a huge pre-
fix-sharing among items and a very compressed tree by sorting the
items in frequency descending order. They also showed that by
arranging nodes in such order infrequent nodes cannot appear be-
tween the frequent nodes. As IWFPTWA arranges items in weight
ascending order, it has a poor prefix-sharing and that takes more
memory. Moreover, non-candidate nodes frequently occur be-
tween weighted frequent candidate nodes. Therefore, there are
many global weighted infrequent nodes in the prefix trees of the
candidate items in IWFPWA. It increases the prefix tree creation
time. These non-candidate nodes have to be deleted while creating
the conditional tree from the prefix tree. These deletions also in-
crease the conditional tree creation time. As a consequence, the
whole mining process is delayed remarkably. This situation can
be explained in the mining process of IWFPWA in Section 4.1 and
Fig. 9. Another remarkable thing is that, when we are creating
the prefix trees for candidate items, we may have to traverse the
whole tree and each node may appear inside the prefix tree. For



Table 2
Weighted frequent patterns calculations from candidate set in IWFPWA.

No. Candidate patterns Weight calculation Weighted support calculation Result

1 ad:4 (0.6 + 0.35)/2 = 0.475 0.475 � 4 = 1.9 Pruned
2 ag:4 (0.6 + 0.4)/2 = 0.5 0.5 � 4 = 2.0 Pruned
3 ab:6 (0.6 + 0.5)/2 = 0.55 0.55 � 6 = 3.3 Passed
4 a:8 0.6 0.6 � 8 = 4.8 Passed
5 abd:4 (0.6 + 0.5 + 0.35)/3 = 0.483 0.483 � 4 = 1.93 Pruned
6 abg:4 (0.6 + 0.5 + 0.4)/3 = 0.5 0.5 � 4 = 2.0 Pruned
7 bg:5 (0.5 + 0.4)/2 = 0.45 0.45 � 5 = 2.25 Passed
8 b:7 0.5 0.5 � 7 = 3.5 Passed
9 g:5 0.4 0.4 � 5 = 2.0 Pruned

10 d:4 0.35 0.35 � 4 = 1.4 Pruned

Fig. 10. Mining process in IWFPFD.
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example, to create prefix trees of candidate items in Fig. 9, we have
to traverse almost all the nodes (30 nodes out of 31 nodes) of the
IWFPTWA (Fig. 8c). Accordingly, these 30 nodes are also present at
least in one prefix tree. This means almost all the nodes in the tree
are participating during the mining operation. To get rid of these
problems, IWFPTFD is designed in frequency descending order. As
the candidates of weighted frequent patterns are taken by multi-
plying GMAXW, the frequency descending order is also the maxi-
mum weighted frequency descending order. Hence, by arranging
the items in this order IWFPTFD keeps all the non-candidate items
after the candidate items in each branch, i.e., no non-candidate
item can appear in IWFPTFD between the candidate items. More-
over, while prefix trees are created from the main tree, we do
not have to traverse the non-candidate nodes. Only seven nodes
of the tree (shown in Fig. 8e) have to be traversed to create the pre-
fix trees as shown in the mining process of IWFPFD (in Fig. 10).
Table 3
Weighted frequent patterns calculations from candidate set in IWFPFD.

No. Candidate patterns Weight calculation

1 a:8 0.6
2 ab:6 (0.6 + 0.5)/2 = 0.55
3 b:7 0.5
4 ag:4 (0.6 + 0.4)/2 = 0.5
5 bg:5 (0.5 + 0.4)/2 = 0.45
6 g:5 0.4
7 abg:4 (0.6 + 0.5 + 0.4)/3 = 0.5
8 ad:4 (0.6 + 0.35)/2 = 0.475
9 bd:4 (0.5 + 0.35)/2 = 0.425

10 abd:4 (0.6 + 0.5 + 0.35)/3 = 0.4
11 d:4 0.35
In spite of these drawbacks, IWFPWA has two advantages over
IWFPFD. The first one is, in IWFPWA, when we go for mining opera-
tion for the bottom-most item ‘‘a’’ (in Fig. 8c), then LMAXW is the
weight of ‘‘a’’, after that for mining the next to bottom-most item
‘‘b’’ (in Fig. 8c), LMAXW is the weight of ‘‘b’’, and so on. The second
advantage is, as the LMAXW is reducing from bottom to top, the
probability of a pattern to be a candidate will also be reduced.
For example, it is shown in Sections 4.2 and 4.3 that ‘‘bd’’ is a can-
didate pattern in IWFPFD but not in IWFPWA for minimum thresh-
old 2.2. Table 4 shows the performance comparison between
IWFPWA and IWFPFD using different criteria for minimum threshold
2.2 in the example database presented at Fig. 8a.

Lemma 1. The number of nodes participating during the mining
operation in IWFPFD is always less than or equal to the number of
nodes participating during the mining operation in IWFPWA.
Weighted support calculation Result

0.6 � 8 = 4.8 Passed
0.55 � 6 = 3.3 Passed
0.5 � 7 = 3.5 Passed
0.5 � 4 = 2.0 Pruned
0.45 � 5 = 2.25 Passed
0.4 � 5 = 2.0 Pruned
0.5 � 4 = 2.0 Pruned
0.475 � 4 = 1.9 Pruned
0.425 � 4 = 1.7 Pruned

83 0.483 � 4 = 1.93 Pruned
0.35 � 4 = 1.4 Pruned
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Proof. All the nodes containing non-candidate items cannot
appear any prefix tree of the candidate items because IWFPTFD is
sorted in frequency descending order. But, for IWFPTWA, this item
may appear anywhere in the tree. If it appears anywhere except
the last node in any branch then it will appear in the prefix trees
of candidate items. Hence, the number of nodes participating dur-
ing the mining operation in IWFPFD cannot be greater than the
number of nodes participating in IWFPWA. h
Lemma 2. The number of nodes N participating in the mining opera-
tion in IWFPFD reduces when the number of non-candidate items
increases for increased minimum threshold value.
Proof. N is equal to the total number of nodes in IWFPFD when the
minimum threshold value is zero. If the minimum threshold
increases then some non-candidate nodes from the bottom of the
tree cannot appear in any prefix tree of the candidate items. Sup-
pose for minimum threshold x, the number nodes not participating
in mining is y. If x increases by dx amount then y has to increase dy

amount and dy P 0. So, y 6 y + dy. h
4.4. Analysis of completeness/correctness

In this section, we show the completeness/correctness of our
approaches in spite of lots of additions/deletions/modifications of
transactions.

Lemma 3. For any transaction in a DB, there exists a unique path
in an IWFPTWA/IWFPTFD starting from the root.
Proof. Let X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn} be two transac-
tions and their items are sorted in weight ascending order. When
we want to insert X into an IWFPTWA, we need to check whether
the root node contains any child node with item-id x1. If a match
is found then the frequency value of x1 is added there, otherwise,
a new node is created. The similar process is recursively applied
for other items x2–xn in other levels of the tree. Since the root of
any sub-tree does not have more than one child with the same
item-id, items of Y shares the same path of X if they are identical,
i.e., x1 = y1, x2 = y2, . . . , xn = yn. As a consequence, for any transac-
tion, there is a unique path in an IWFPTWA starting from the root.
By considering the items of these two transactions are sorted in
frequency descending order, it can be shown that IWFPTFD also
has a unique path for each transaction starting from the root. h
Lemma 4. All the current transactions of

(i) an initial database DB
(ii) an updated database DB + db+ after insertions

(iii) an updated database DB � db� after deletions
(iv) an updated database DB ± dbmod after modifications
Table 4
Performance comparison between IWFPWA and IWFPFD.

Performance evaluation criteria IWFPWA IWFPFD

No. of nodes in the global tree 31 19
No. of nodes participating in mining operation 30 7
No. of prefix and conditional trees 8 5
No. of nodes in prefix and conditional trees 51 10
No. of global infrequent node deletions in prefix trees 17 0
No. of candidate patterns 10 11
can be discovered in weight ascending/frequency descending order
from an IWFPTWA/IWFPTFD.
Proof.

(i) Let T be an IWFPTWA for DB. According to Lemma 3, each
transaction X has a unique path staring from root in T and
they are stored in weight ascending order. Hence, all the
transactions can be discovered from T in the weight ascend-
ing order. Similarly, it can be shown that all the transactions
can be discovered from an IWFPTFD in frequency descending
order.

(ii) Consider the original database DB is incremented by insert-
ing a group of transactions db+. Similar to the construction
process of an IWFPTWA, any new transaction inside db+ is
inserted into the IWFPTWA and is stored in a unique path
(according to Lemma 3). Let T’ be the modified IWFPTWA

for DB + db+. According to Lemma 4(i), all the current trans-
actions of DB + db+ can be discovered from T’ in weight
ascending order. Similar result can be shown for an IWFPTFD.

(iii) Consider the original database DB is decremented by delet-
ing a group of transactions db-. Let X = {x1, x2, . . . , xn} be a
transaction in db�. According to Lemma 3, it is stored in a
unique path in the IWFPTWA. Therefore, it can be traversed
through a unique path in the IWFPTWA in weight ascending
order. While traversing the path, frequency value can be
reduced by one for each item and thus deletion of X can be
completed. The nodes containing zero count after this reduc-
tion can be deleted. Now the IWFPTWA contains all the trans-
actions except X. Similarly, other transactions of db� can be
removed and the modified IWFPTWA exactly represents the
updated database DB � db�. Similar result can be shown
for an IWFPTFD.

(iv) Lemma 4(ii) and 4(iii) show that the IWFPTWA/IWFPTFD can
be properly updated for insertion and deletion of a full trans-
action. It trivially implies that IWFPTWA/IWFPTFD can also be
properly updated for modifications of a transaction (inser-
tions/deletions/replacements of items inside a transaction).
We can delete the transaction from the IWFPTWA/IWFPTFD,
and insert the final modified transaction. As a consequence,
the modified IWFPTWA/IWFPTFD can exactly represent the
updated database DB ± dbmod. h

Lemma 4 proves that when a database is updated by additions/
deletions/modifications of transactions, our proposed tree struc-
tures IWFPTWA and IWFPTFD are also updated properly and always
represent the complete/correct set of current transactions in a
database. Therefore, despite many additions/deletions/modifica-
tions of transactions, our algorithms always mine complete/correct
set of weighted frequent patterns by using the tree structures
IWFPTWA/IWFPTFD according to a user-given minimum threshold.

4.5. Analysis of space requirements

Even though IWFPTWA and IWFPTFD have a unique path for each
transaction, the following observation shows that they have a lot of
prefix-sharing (discussed in Section 3.1).

Observation 1. In an IWFPTWA/IWFPTFD, two transactions
X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , ym} share the first node if
x1 = y1, first and second node if x1 = y1 and x2 = y2, and so on. Stated
in other way, a transaction X = {x1, x2, . . . , xn} is totally isolated in
an IWFPTWA if no other transaction in DB starts with x1. For
example, consider X = {a, b, c}, then X is totally isolated in an
IWFPTWA/IWFPTFD if no other transaction starts with item a. The
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existing research (Cheung & Zaïane, 2003; Grahne & Zhu, 2005;
Han et al., 2004, 2007; Koh & Shieh, 2004; Leung et al., 2007;
Tanbeer et al., 2009; Yun, 2007a, 2007c, 2008a, 2008b; Yun &
Leggett, 2005a) shows that probability of this event is very low and
each path in a prefix tree achieves some prefix-sharing. It is also
discussed in Section 3.1 that how much prefix-sharing will be
achieved by a prefix tree is dependent on the ordering of items.
Moreover, it is also shown in Section 3 that IWFPTFD achieves a
larger prefix-sharing compared to IWFPTWA since it stores the
items in frequency descending order.

The following lemma shows the worst-case memory require-
ment of IWFPTWA/IWFPTFD.

Lemma 5. Given a database size |DB|, the size of an IWFPTWA/
IWFPTFD (without considering the root) is bounded by

P
X2DBjsizeðXÞj;

where X is a transaction in DB.
Proof. According to Lemma 3, a transaction X contributes at best
one path in an IWFPTWA/IWFPTFD. Therefore, its maximum size in
an IWFPTWA/IWFPTFD is |size(X)|. Consider the worst-case, where
an IWFPTWA/IWFPTFD does not get any prefix-sharing in any node.
At this situation, the maximum size of an IWFPTWA/IWFPTFD is
P

X2DBjsizeðXÞj. h

However, according to Observation 1, an IWFPTWA/IWFPTFD

usually achieves a lot of prefix-sharing due to the common prefix
items inside transactions. Hence, the size of an IWFPTWA/IWFPTFD

is normally much smaller than
P

X2DBjsizeðXÞj.
However, the memory requirement of IWFPTWA/IWFPTFD is lar-

ger than the FP-tree memory requirement since an FP-tree cap-
tures only frequent items from transactions according to a user-
Fig. 11. The IWFPW
given minimum threshold. Even though FP-tree requires a less
amount of memory, it must be constructed from the very begin-
ning when the minimum support threshold is changed or the data-
base is updated. As a consequence, it is not applicable for
incremental or interactive mining. Moreover, it considers binary
appearances of items inside transactions and not suitable for
weighted frequent pattern mining.
4.6. Interactive mining performance

IWFPT has the ‘‘build once mine many’’ property that means after
creating one tree; several mining operations can be performed using
different minimum thresholds. For example, after the creation of
IWFPT at first, we give the minimum threshold = 2.2, then after find-
ing the result we can give another minimum threshold like 2.0 or 2.5.
Same operation can be done several times. Therefore, after the first
time, we do not have to create the tree again. If the current minimum
threshold is larger than the previous one then we do not have to per-
form mining operation as well. Because the resultant patterns of cur-
rent mining threshold is a subset of the result we have got for the
previous threshold. For example, after performing the mining oper-
ation for the minimum threshold = 2.2, if we go for mining operation
with the minimum threshold = 2.5 then we do not need to perform
mining operation again but if the new minimum threshold = 2.0
then we have to perform mining operation again.
4.7. Description of algorithms

The pseudo-code of IWFPWA algorithm is shown in Fig. 11. In
line 2, it creates the global header table H to keep the items in
weight ascending order. In line 3, it declares a variable GMAXW
A Algorithm.



Fig. 12. Insert, delete and modify procedures.
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to denote the global maximum weight. In line 4, the root R of an
IWFPTWA is created and initialized to NULL. In line 5, the next
transaction Ti is scanned and new items inside it are inserted in
H according to the weight ascending order. All the items of Ti are
also sorted in this order in line 6. Procedures of additions/dele-
tions/modifications of transactions are invoked from lines 7 to
13. In line 14, it checks whether the current transaction is the last
transaction of the main DB or any db+/db�/dbmod. If the above con-
dition is true, then the current GMAXW is defined and minimum
threshold (d) input is taken from the user in lines 15 and 16,
respectively. The conditional statement in line 17 checks the cur-
rent d with the previous one to take advantages of interactive min-
ing stated in Section 4.6. IWFPWA algorithm scans the header table
from the bottom to take the advantage of weight ascending order.
In line 19, it checks whether the maximum weighted frequency of
an item satisfies d and then it calls the Test_Candidate procedure
(shown in Fig. 13) in line 20. This procedure calculates the actual
weighted frequency of a pattern and based on that result adds a
pattern in the weighted frequent pattern list. In line 21, prefix tree
with header table is created for a particular item and recursive
Mining procedure is called in line 22.

The Insert procedure is presented in Fig. 12. It recursively in-
serts the elements of a transaction in an IWFPTWA/IWFPTFD. It re-
ceives one transaction and the current root of a sub-tree where
the front element of the transaction has to be inserted as a child.
Please note that the received transaction is already sorted in
weight ascending/frequency descending order by the caller algo-
rithm IWFPWA/IWFPFD.

The ‘‘if condition’’ in lines 2–4 tests whether or not the received
transaction is empty. The procedure returns when the received
transaction is empty. In line 5, the front element, x, of the received
transaction is taken to insert as a child of the current root R and
remaining elements are taken from the transaction for the next
recursion. The ‘‘if-else condition’’ in lines 6–12 tests whether or
not a match is found for x in the child nodes of R. If the item-name
of x is matched with the item-name of any child node of R, then we
need to increment the count value of the existing node by one.
However, it creates a new child node of the current root if it fails
to find any match. The new node is initialized with the item-name
of x and count value of 1(lines 10 and 11). The count value of head-
er table entry for the item is also incremented by one (line 13). In
line 14, the procedure recursively calls itself with the remaining
items of the transaction and current child node as the root.

The Delete procedure is also presented in Fig. 12. It recursively
deletes the elements of a transaction in an IWFPTWA/IWFPTFD. It re-
ceives one transaction and the current root of a sub-tree where the
front element of the transaction has to be deleted. The ‘‘if condi-
tion’’ in lines 2–4 tests whether or not the received transaction is
empty. The procedure returns when the received transaction is
empty. In line 5, the front element, x, of the received transaction
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is taken to delete from the current root R and remaining elements
are taken from the transaction for the next recursion. In line 6, we
search for a child node C of R containing the same item_id as x. The
count value of C is then decremented by one along with its header
table entry (lines 7 and 8). In line 9, the procedure recursively calls
itself with the remaining items of the transaction and current child
node as the root. After coming back from recursive call, it is
checked that whether or not count value of C becomes zero in that
node. If it becomes zero, then it is deleted from the child-list of R.
Similar checking and deletion operations are performed for its
header table entry.

As described above, the Insert and Delete procedures can per-
form insertion and deletion of transactions in an IWFPTWA/
IWFPTFD. Consequently, any kind of modifications can be possible
in our algorithm. For example, transaction T can be modified by
adding/deleting many items inside it, and let the modified transac-
tion be Tmod. To perform this modification we need to delete T and
insert Tmod in an IWFPTWA/IWFPTFD. The Modify procedure (pre-
sented at the bottom of Fig. 12) receives two transactions T1 and
T2. The T1 transaction represents the transaction to be modified
and the T2 transaction represents the new modified transaction.
This procedure at first deletes T1 and then inserts T2 to perform this
modification.

The Mining procedure creates the conditional tree for a partic-
ular pattern a in lines 1–8 as shown in Fig. 13. Subsequently, in
lines 9–13, this procedure creates a candidate pattern ab for each
item b appears in the header table HC of the conditional tree CT,
tests candidate ab by invoking the Test_Candidate procedure, cre-
ates the prefix tree with header table for ab and recursively calls
itself with pattern ab.

The pseudo-code of IWFPFD algorithm is shown in Fig. 14. In line 2,
it creates the global header table H to keep the items in frequency
descending order. GMAXW and LMAXW variables are declared in
lines 3 and 4, respectively. In line 5, the root R of an IWFPTFD is cre-
ated and initialized to NULL. Procedures of additions/deletions/mod-
ifications of transactions are invoked from lines 6 to 14. In lines 15
and 16, it performs the tree-restructuring operation in order to sort
the tree nodes and header table items in the frequency descending
order using a path adjusting method (known as bubble sort) (Koh
& Shieh, 2004) if the next N% database is scanned or database is fin-
ished. In line 18, it calculates the current GMAXW. It has the same
checking for interactive mining like IWFPWA in line 20. It scans the
header table from top to bottom in line 21 and adjusts the LMAXW
in lines 25 and 26 as specified in Section 4.2. For the candidate testing
and mining operations, it uses the same functions of Fig. 13 as shown
in lines 23 and 28, respectively.
5. Experimental results and analysis

Our algorithms are the first incremental and interactive
weighted frequent pattern mining algorithm so far we know. But,
to show the power of ‘‘build once mine many’’ property of our tree
structures in interactive mining, to show the effect of one database
scan, we compare our algorithms with the existing recent WFIM
algorithm using both dense and sparse datasets. We also show
the effectiveness of our tree structures and algorithms when a
database is increasing or shrinking. We use the term IWFP to de-
note our two algorithms together.
5.1. Test environment and datasets

To evaluate the performance of our proposed tree structures
and algorithms, we have performed several experiments on both
IBM synthetic datasets (T10I4D100K, T40I10D100K) and real-life
datasets (chess, mushroom, pumsb, pumsb�, retail, connect, kosarak)
from frequent itemset mining dataset repository (http://
www.fimi.cs.helsinki.fi/data/) and UCI Machine Learning Reposi-
tory (http://www.kdd.ics.uci.edu/). These datasets do not provide
the weight values of each item. As like the performance evaluation
of the previous weight based frequent pattern mining (Tao, 2003;
Wang et al., 2004; Yun, 2007a, 2007c, 2008b; Yun & Leggett,

http://www.fimi.cs.helsinki.fi/data/
http://www.fimi.cs.helsinki.fi/data/
http://www.kdd.ics.uci.edu/


Fig. 14. The IWFPFD algorithm.

Table 5
Dataset characteristics.

Datasets Size
(MB)

No. of
transactions

No. of distinct
items (D)

Max. transaction
Length

Min. transaction
length

Avg. transaction
length (A)

Dense/sparse characteristics ratio
R = (A/D) � 100 (%)

mushroom 0.56 8124 119 23 23 23 19.327
chess 0.34 3196 75 37 37 37 49.33
T10I4D100K 3.83 100,000 870 29 1 10.1 1.16
pumsb� 10.7 49,046 2088 63 49 50.48 2.42
kosarak 30.5 990,002 41,270 2498 1 8.1 0.0196
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2005a, 2005b, 2006), we have generated random numbers for the
weight values of each item, ranging from 0.1 to 0.9. We obtained
consistent results for all those datasets. We show the experimental
results on IBM synthetic T10I4D100K dataset and real-life mush-
room, chess, pumsb�, and kosarak datasets. Our programs were
written in Microsoft Visual C++ 6.0 and run on the Windows XP
operating system with a Pentium dual core 2.13 GHz CPU and
2 GB main memory.

Table 5 shows different important characteristics of the syn-
thetic and real-life datasets. Dense and sparse natures of datasets
are very useful properties (Verma & Vyas, 2005; Ye et al., 2005).
Many pattern mining research works (Chang & Lee, 2005; Cheung
& Zaïane, 2003; Dong & Han, 2007; Grahne & Zhu, 2005; Han et al.,
2004; Hu et al., 2008; Jiang & Gruenwald, 2006; Koh & Shieh, 2004;
Leung et al., 2007; Li et al., 2006; Metwally et al., 2006; Pei & Han,
2000; Raissi et al., 2007; Tanbeer et al., 2009; Verma & Vyas, 2005;
Wang et al., 2003; Ye et al., 2005; Yu et al., 2006; Yun, 2007a,
2007c; Yun & Leggett, 2005a, 2005b, 2006; Zhang et al., 2007) eval-
uate the performances of the algorithms using these characteristics
of datasets. A dataset becomes dense when it contains many items
per transaction and its number of distinct items is small. Consider
the chess dataset in Table 5. It has a total of 75 distinct items and its
average transaction length is 37. So, 49.33% items are present in
every transaction. If we take the measure of R shown in Table 5,
it tells the probability of an item to appear in a transaction. We
can tell that a dataset is dense if R > 10% and sparse if R 6 10%.
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Fig. 15. Runtime comparison on the mushroom dataset.
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Fig. 16. Runtime comparison on the chess dataset.
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Fig. 17. Runtime comparison on the T10I4D100K dataset.
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Fig. 18. Runtime comparison on the pumsb� dataset.

Table 6
Runtime distribution (s).

Tree
construction
time

Tree
restructuring
time

Mining
time

Total
time

mushroom
minimum
threshold (30%)

IWFPWA 5.582 0 6.781 12.363
IWFPFD 5.623 0.798 0.597 7.018

chess
minimum
threshold (70%)

IWFPWA 1.521 0 31.249 32.77
IWFPFD 1.533 0.731 5.657 7.921

T10I4D100K
minimum
threshold (5%)

IWFPWA 50.485 0 82.528 132.013
IWFPFD 50.374 10.276 1.781 62.431

pumsb�
minimum
threshold (70%)

IWFPWA 63.952 0 138.195 202.147
IWFPFD 64.258 28.018 13.219 105.495

Table 7
Effectiveness of IWFP with a comparison of no. of interactive weighted frequent
patterns and no. of traditional interactive frequent patterns.

Dataset Minimum
threshold (%)

No. of frequent
patterns

No. of weighted
frequent patterns

T10I4D100K 1 385 174
1.5 237 105
2 155 69
2.5 107 43
3 60 24

mushroom 15 98,575 41,309
20 53,663 24,087
25 5545 2359
30 2735 1076
35 1189 492
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Obviously, dense datasets have too many long frequent as well as
weighted frequent patterns. The dataset chess is too dense and the
dataset mushroom is moderately dense. Similarly, the dataset
T10I4D100K is moderately sparse and the dataset kosarak is too
sparse.

5.2. Effectiveness of IWFP in interactive weighted frequent pattern
mining

Existing algorithm WFIM needs two database scans and its data
structure does not have the ‘‘build once mine many’’ property. For
each given minimum threshold, it has to construct its data struc-
ture and scan database twice to mine the weighted frequent pat-
terns. The experimental results in two dense and two sparse
datasets show that our algorithms are better than WFIM even if
in the worst case. Fig. 15 shows the runtime comparison in mush-
room dataset for the worst case of interactive mining in our algo-
rithm. As we have stated in interactive mining in Section 4.6, our
algorithms get benefit after the first mining threshold. We have ta-
ken here the result in Fig. 15 for the worst case of our tree, i.e., we
have given the threshold in descending order (at first 30% then 25%
and so on). After the first threshold, our trees do not have to be
constructed again. As the minimum threshold decreases, a new
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Fig. 19. Database is increasing by db+ = 0.2 million on the kosarak dataset.
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Fig. 20. Database is decreasing by db� = 0.1 million on the kosarak dataset.

Table 8
Memory comparison (MB).

mushroom chess T10I4D100K pumsb� kosarak

IWFPTWA 0.712 0.659 15.084 53.714 204.438
IWFPTFD 0.431 0.362 11.237 42.731 173.127
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mining operation is needed. The best case occurs if we go for min-
ing threshold in increasing order, i.e., at first 10% then 20% and so
on. Then weighted frequent patterns of threshold 20% are a subset
of the weighted frequent patterns of threshold 10%, so without
mining, we can find the resultant weighted frequent patterns from
the previous result. In that case, after the first mining threshold,
the computation times for other thresholds are almost negligible
compared to the first one. Figs. 16–18 show the runtime compari-
son in chess, T10I4D100K and pumsb� datasets, respectively for the
worst case of interactive mining. Table 6 shows the runtime distri-
bution (seconds) of the total runtime for our proposed two algo-
rithms. It is remarkable that IWFPFD achieves a huge gain in
mining time by sacrificing a small amount of restructuring time.
The restructuring threshold N = 10% is used here for IWFPFD.

Traditional frequent pattern mining methods may discover
many spurious patterns as they consider equal weight values for
every item. Many unimportant patterns having high frequency val-
ues and low weight values can be generated. By considering differ-
ent weights of items, weighted frequent pattern mining can
discover fewer but more important and interesting patterns com-
pared to traditional frequent patterns. Table 7 shows the effective-
ness of IWFP by comparing the number of traditional interactive
frequent patterns and interactive weighted frequent patterns.
One synthetic dataset T10I4D100K and one real-life dataset mush-
room are used for this comparison. We have used five different
thresholds for each dataset as shown in Table 7.

5.3. Effectiveness of IWFP in incremental weighted frequent pattern
mining

We have tested the effectiveness of IWFP in incremental mining
with the kosarak dataset. It has almost 1 million transactions
(990,002) and 41,270 distinct items. At first we have created the
IWFPT for 0.2 million transactions of this dataset and then per-
formed mining operation with a minimum threshold of 5%. An-
other 0.2 million transactions were added in the tree and
performed mining operation with the same minimum threshold.
In the same way, all the transactions in the kosarak dataset were
added and mining operation was performed at each stage with a
minimum threshold of 5%. This result is shown in Fig. 19. After
adding each db+, we have restructured the IWFPTFD before mining.
It is obvious in Fig. 19 that as the database is increasing, the tree
construction and mining times are increasing. After adding all
the db+, we have performed the deletion operation in that tree.
Here db� size is 0.1 million. At first 0.1 million transactions were
deleted and mining operation was performed with a minimum
threshold of 5%. Same operation was repeated for another 4 times.
This result is shown in Fig. 20. After deleting each db� we have
restructured the IWFPTFD before mining. It is also obvious in
Fig. 20 that as the database is decreasing, the tree construction
and mining times are decreasing. Our IWFPT have efficiently han-
dled 41,270 distinct items in the kosarak dataset. We can observe
the different number of distinct items in each size of this dataset
in the horizontal axis of Fig. 19. Constructed IWFPT has 28,780 dis-
tinct items for 0.2 million transactions, 34,062 distinct items for
0.4 million transactions, 37,030 distinct items for 0.6 million trans-
actions, 39,562 distinct items for 0.8 million transactions and
41,270 distinct items for the full kosarak dataset. Hence, we can ob-
serve the scalability of IWFP in Fig. 19 by handling 41,270 distinct
items and around 1 million transactions in the kosarak dataset.

5.4. Memory usage

Prefix-tree-based frequent mining research (Cheung & Zaïane,
2003; Koh & Shieh, 2004; Leung et al., 2007; Li et al., 2006; Tanbeer
et al., 2009; Zhang et al., 2007) showed that the memory require-
ments for prefix trees are low enough to use the gigabyte-range
memory available recently. We have also handled our IWFPT very
efficiently within this memory range. Table 8 shows the memory
usage (MB) for both of our proposed IWFPT constructed for full
mushroom, chess, T10I4D100K, pumsb� and kosarak datasets. There-
fore, our IWFPT prefix tree structures are efficient for weighted fre-
quent pattern mining with the recently available gigabyte-range
memory. Table 8 also shows that IWFPTFD requires much less
amount of memory compared to IWFPTWA because of having more
prefix-sharing.
6. Discussion

As discussed in Section 1, by considering different weights of
items, WFP mining can discover more useful knowledge from
real-life market basket databases. In this section, we elaborately
discuss some other real-life applications of WFP mining.

In a stock market, each share may have different importance
due to different real-life reasons. Therefore, mining only frequent
patterns cannot extract the most interesting shares in a share mar-
ket. By finding weighted frequent share patterns, stock investors
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can obtain more useful information to make their policies. In a sim-
ilar way, WFP mining can be effective in extracting important
knowledge from the auction market in which buyers enter compet-
itive bids and sellers enter competitive offers simultaneously. In
application domains such as financial data analysis, the telecom-
munications industry, and the retail industry, weighted frequent
pattern mining can be used to detect unusual access patterns or se-
quences related to financial crimes, fraudulent telecommunica-
tions activities, and the purchase of many expensive items within
a short time (Yun, 2007c). In this case, higher weights are given
to items which have been previously found in fraudulent patterns
(Yun, 2007c).

The importance of different websites is also different in the
real-life scenarios. Mining frequent web traversal patterns can
find only the patterns occurred frequently. However, if different
weights are assigned to different websites according to its real-
life significances or user interests, then more crucial knowledge
can be discovered by weighted web traversal pattern mining.
WFP mining is also useful for biological gene data analysis, as
different types of genes have different significance for a particu-
lar drug analysis. Global positioning system (GPS) of Telematics
can be found another important application area of weighted
frequent pattern mining. One possible application is the determi-
nation of a traffic pattern (a set of links) that considers speed
and traffic volume using the weight and frequency information
of each link (Yun, 2007a; Yun & Leggett, 2006). Candidate
weighted frequent patterns (the combination of links) can be
calculated according to a user’s request to find a path between
two locations.

The above discussion shows that WFP mining can mine more
practical knowledge than the traditional frequent patterns. How-
ever, as discussed in Section 1, the real-world databases are dy-
namic in nature, i.e, new transactions can be inserted and old
transactions may be deleted or modified frequently. Moreover,
interactive mining is essentially needed so that users can change
their minimum thresholds dynamically according to their applica-
tion interests. Hence, it would be more realistic to consider incre-
mental and interactive WFP mining rather than only WFP mining
in static databases.
7. Conclusions

In this paper, we propose two novel tree structures and two
new single-pass weighted frequent pattern mining algorithms
based on those tree structures for incremental databases. To the
best of our knowledge, our approaches are the first effort to effi-
ciently mine weighted frequent patterns with a single database
scan and on incremental databases. Our tree structures have the
‘‘build once mine many’’ property and highly suitable for interactive
mining. Between our two tree structures, because of relatively sim-
pler construction process, IWFPTWA provides easier maintenance
phase during incremental mining. On the other hand, a rather com-
pact structure of IWFPTFD requires tree restructuring operation be-
fore mining. However, we have shown that the tree restructuring
cost of IWFPTFD is insignificant compared to the gain achieved in
mining phase from the tree compactness that reduces the overall
runtime. Both of the algorithms are capable of using the previous
tree structures and mining results to reduce the calculations by
remarkable amount. They are also applicable in real time data pro-
cessing like data stream as they require only one database scan.
Extensive performance analyses show that our tree structures
and algorithms are highly scalable that can efficiently handle lots
of insertions, deletions and modifications, with a large number of
distinct items, and interactive mining.
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